
N88-16366

An Easy-to-use Diagnostic System Development Shell

L. C. Tsai, J. B. Ross , C. Y. Han , W. G. Wee

Department of Electrical And Computer Engineering

University of Cincinnati
Cincinnati, Ohio 45221

ABSTRACT

This paper describes an expert system development shell for

diagnostic systems, the Diagnostic System Development Shell

(DSDS). The major objective of building the DSDS is to create a

very easy-to-use and friendly environment for both types of users

-- knowledge engineers and end-users. The DSDS is written in OPS5

and CommonLisp. It runs on a VAX/VMS system. A set of domain-

independent, generalized rules is built in the DSDS, so the users
need not be concerned about building the rules. The facts are ex-

plicitly represented in a unified format. These features make the

DSDS very easy to use. A powerful check facility which helps the

user to check the errors in the created knowledge bases is

provided. A judgment facility and other useful facilities are

also available. A diagnostic system (DS) developed based on the

DSDS system is question driven and can call or be called by other

knowledge-based systems written in OPS5 and CommonLisp. A

prototype DS for diagnosing a Philips constant potential X-ray
system has been built using the DSDS.

i. Introduction

Recently, expert systems have been applied to a variety of

fields such as medicine, finance, engineering, and science [4,5].

The number of expert systems developed has doubled annually since

the late seventies [2]. This rapid increment of the number of ap-

plications has led to the appearance of a wide range of commer-

cially available expert system tools or so-called expert system

development shells. Currently, these expert system tools are

responsible for about 85% of fielded systems [3]. Most of the
shells are powerful and fancy. But they are complex. Reference

manuals with hundred of pages are not uncommon. It takes a rela-

tively long time to learn them and to use them effectively. In

addition, users are supposed to have some background in AI tech-
niques and programming languages. In general, even with the shell

available, developing an expert system is not a trivial task. For

instance, in building of a medium size rule-based expert system
hundreds of rules have to be created. Many issues such as the

overall system structure and control schemes have to be con-

sidered by the user. Thus, it is desirable to create an environ-

ment that would take away the burden of learning a complicated

development shell and creating rules that are related to the

domain knowledge. In addition, this shell could be easily used by

the system designer and end-users alike. With this objective in

with the Aircraft Engine Business Group of General Electric
Co., Evendale, Ohio.

**
with Department of Computer Science, University of Cincinnati.

41

mind, the Diagnostic System Development Shell (DSDS)
dev_ioped and is presented in the next sections.

has been

Both the system architecture and its major components are
presented in Section 2. A prototype diagnostic system (DS)
developed by the DSDS is discussed in Section 3 and, finally, the
concluding remarks are in Section 4.

2. The Diagnostic System Development Shell
The Diagnostic System Development Shell (DSDS) is a software

utility that allows users, who know little about AI concepts,
techniques, and any high level computer languages, to develop
diagnostic systems and to use them.

Unlike the existing tools, there is a set of domain-

independent, generalized rules in the DSDS. All the user needs to

consider is the coding of domain knowledge (facts only) into

knowledge bases. The facts, which are explicitly represented in

lists with a unified format, are organized in nodes of decision
tree structures. These features make both the DSDS easy to use

and the knowledge base easy to build, modify, and expand. To

monitor and to help users in building the DS a powerful check

facility in the DSDS can pick up most of the possible mistakes
the user might make. Since no AI techniques and programming

skills are required, the domain experts can concentrate on coding

the domain knowledge. A number of facilities, which include

judgment, explanation, and help with graphics, will make the end-

users feel the system is more friendly and convenient to run a DS

developed by the DSDS.

2.1 Architecture of DSDS

The DSDS consists of eight major components. They include

the generalized rule set (GRS), the fact knowledge base (FKB),

and facilities such as the checker, the helper, the explainer,

the judger, the DCL LISP interface and the graphic displayer.

Among these components, the GRS, the FKB, and the checker are

more important and unique. They will be discussed in the rest of
this section.

The system architecture of the DSDS is shown in Figure i.

The built-in generalized rule set is in charge of reasoning. In

the development mode of a DS, the user inputs domain knowledge

into the FKB through an editor and invokes the checker to check

the related LISP syntax and the node semantic rules.

During the execution of the DS, the system interacts with
the user by generating questions to the user. The answers

provided by the user will be checked by the judger which will

identify and treat all the possible incorrect answers. The helper
offers help with graphics when the user asks for. The DCL LISP

interface makes it possible to use DCL under the OPS5 and COMMON-

LISP environments. The graphic displayer are Fortran programs

that displays graphics when help is provided. The explainer

provides explanations of 'why' and 'how'.

42

VMS/DCL4_---aD

USER

i

DCL

LISP

INTERFACE

GENERALIZED RULE

HELPER

GRAPHIC

DISPLAYER

JUDGER I

FACT

KNOWLEDGE

BASE

I CHECKER I

Figure i. The Architecture of the DSDS system.

2.2 The Generalized Rule Set

The GRS contains the rules that will control the reasoning

process while traversing down a decision tree during a diagnosis.
The generalized rule set is based on two assumptions. One is that
there is only a single source of error and the error is not

transient. This assumption, as can be seen in most of the

troubleshooting guides, is common in the field of diagnoses
[1,7]. In fact, if there are more than one error source, the DS
may be run several times to isolate all of them.

The other assumption is that the decision trees, on which

the DS is based, are basically binary trees. The branches of

every node of the decision trees represent two opposite
propositions, yes and no, or positive and negative. This assump-
tion fits diagnostic procedures well. The "car won't start"

problem [6] is a typical example. Actually, the the binary tree
structure may become a type of graph in which a node still has

only two children, but different nodes could share a child, one
node's children could be its parents or ancestors.

To illustrate the GRS, assume a simple, generic, binary
decision tree of five nodes is given, in which the nodes N1 is
the parent node of the nodes N2 and N3, and the node N3 is the

parent node of the nodes N4 and N5. The nodes of the decision

tree contain domain dependent facts, which will be described in

the next section. Also, assume that in the node NI, a diagnostic
test is being made and either answer yes or no is obtained. If

yes, the node N2 will be pursued. In this case, N2 is a leaf that

means a set of conclusions can be generated, problem related sug-

gestions can be listed, and explanations be provided. If no, N3

is pursued and facts in node 3 will identify that this node is

43

not a leaf and a new series of actions such as generating inter-
mediate status or results, continuing further testing, or other
diagnostic actions are triggered. The process repeats for each
node traversed until a leaf node of the decision tree is
encountered.

2.3 The Fact Knowledge Base
Since the GRS is built in, the knowledge base includes facts

only. So the knowledge bases in the DSDS are regarded as the fact
knowledge bases. Facts, which are represented in lists, are or-
ganized in nodes of decision trees. Information related to a node
is included only in the corresponding list, which consists of
attribute-value pairs. All the lists are defined by a unified
LISP format. There are three types of attributes: the necessary,
the link, and the optional attributes. Each node list has all the
necessary and link attributes and part of optional attributes.
There are some syntax rules, which specify that the value types
of certain attributes should be symbols or strings. There are
also some semantic rules, which stipulate relations between
attributes.

The FKBs are accessed by the generalized rules and trans-
ferred into OPS5 working memory. Unlike the generalized rules,

the FKBs can be developed, modified and expanded by the user.

2.4 The Checker

Since the FKBs are defined by LISP functions and the users

are supposed to know nothing about LISP. Some facilities should

be available to avoid making mistakes. Two kinds of facilities

could be helpful. The first is a special interactive interface

which asks users questions, interpreters the answers and codes

them into FKBs. But with this approach the users may easily get

bored, especially all the facts are represented in the same way,
the user will be asked the same questions repeatedly. The other

way is to provide a check facility. Users can code the facts into
FKBs directly through a text editor, then use the checker

facility to check the developed FKBs. Since the facts are repre-

sented in a unified format, the second approach is more effective
in the DSDS.

The checker is able to pick out related LISP syntax errors.

It withdraws the decision trees from the built FKBs and displays
them on the CRT. In addition, the checker can check the semantic

rules. Once the checker picked out some error, it would print out

error message, analyze the error and give the possible causes of

the error. If a fatal error happens, the checker will stop
working. Otherwise, it will continue to check until all the FKBs
are checked.

3. An X-ray System Diagnostic System

A prototype -- an X-ray system DS was built by using the

DSDS on VAX/VMS system. It is a DS for diagnosing a PHILIPS Con-

stant Potential X-ray system. The X-ray system consists of two

major units, the high voltage power supply and the computerized

44

controller. The controller contains nine printed circuit boards.
The domain expertise came from the troubleshooting part of the X-
ray system service manual and a domain expert. Based on this ex-
pertise twenty three decision trees corresponding to the same
number of symptoms were built. The FKB includes 19 files with
more than 5000 lines of code. The Checker was used to pick out
all the syntax and semantic errors. To reduce the search space,
this DS isolates the faults at four levels. The diagnostic proce-
dure first finds out the fault is in the controller unit or in
the high voltage power supply unit. Secondly, it isolates the
faults in a certain board, then in a certain circuit and finally
in a replaceable component.

4. Conclusion
An easy-to-use and friendly environment for designing diag-

nostic systems has been presented. The major features of the sys-
tem are that the knowledge representation and input are
facilitated by a unified list format and the reasoning of the ex-
pert system is done by the built-in generalized rule set. No pre-
vious knowledge of AI techniques and programming languages is
required. The user needs only to concentrate on coding the domain
knowledge into the so-called FKBs.

Overall the system is very straightforward to use. The
prototype, explained in Section 3, has shown that the main objec-
tive of the DSDS system has been achieved. As a minor flaw of the
implementation, the display of graphics is rather slow, since the
process of generating graphics in VAX/VMS is complex. The OPS5
program has to call the display program written in Fortran via
Lisp, DCL, and the display program has to get the data from disk.

5. References
[i] Davis, R. et al., "Diagnosis Based on Description of

Structure and Function," Proc. of AAAI-82, 1982, pp.137-142.
[2] Gilmore, J. F. and Pulaski, K., "A Survey of Expert System

Tools," Proc. of 2nd Conf. on AI Applications, 1985,
pp.498-502

[3] Hamon, P. (ed.), "Inventory and Analysis of Existing Expert
Systems," Expert System Strategies, Vol.2, No.8, Aug.,1986,
pp.l-17.

[4] Hayes-Roth, F., Waterman, D. A., and Lenat, D. B. (eds.),
Building Expert Systems, Addison-Wesley, Reading, MA, 1983.

[5] Waterman, D. A., A Guide to Expert Systems, Addison-Wesley,
Reading, MA, 1985.

[6] Weiss, S. M. and Kulikowski, C. A., A Practical Guide of

Designing Expert Systems, Rowman & Littlefield Pubs, 1984.

[7] A Constant Potential X-Ray System Model 161/321 Service
Manual, philips.

45

